Feb 14, 2007 – Extrated “helical region” sequences of Human Proteins from GenBank.

Run test data on RICO, 3000 cases training data, 846 cases training data
3 attributes (use first 2 attributes to detect if 3rd attribute is +a or –a)
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Tree saved

Evaluation on training data (3000 items):
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This tree can be paraphrased as above shown.

The numbers in parentheses following each leaf indicate the number of training cases associated with each leaf and the number of them misclassified by the leaf.

e.g.

If position 1 = d then


If position 2 = l then position 3 = +a (3 training cases / 1 misclassified case)

[image: image3.png]Evaluation on training data (3000 items):

Before Pruning After Pruning

Size Errors  size Errors Estimate

61 170( 5.7%) 1o72( 578 ( 6.1%)

Evaluation on test data (846 items):

Before Pruning After Pruning

Size Errors  size Errors Estimate
61 42( 5.0%) 1oas( s ( 6.1%)

(2 () <-classified as

a3 (a): class +a
03 (b): class -a

<

<




The output shows both the original and simplified trees perform on the training set from which they were constructed. The original tree of 61 nodes misclassifies 170 of the 3000 training cases (error rat 5.7%). The simplified tree misclassifies 172 of the 3000 training cases (error rate 5.7%), but the program predicts that it will have a much higher error rate of 6.1% on unseen cases.

All the above has been carried out without examining the test cases. After reading the file of 846 cases, each case classified by original and simplified trees. The original tree misclassified 42 of the 846 unseen cases (error rate 5.0%), the simplified tree misclassified 43 of the 846 unseen cases (error rate 5.1%).
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The program also use a simplified form of production rule L -> R (L is a conjunction of attribute-based tests and R is a class). 

Rule 7: The left-hand side contains position 1 = d, position 2 = l, the right-hand side gives the class as +a. The program predicts that this classification will be correct for 31.4% of the cases.

The set of rules is now evaluated on the training cases.

The statistics for the first rule (Rule 7) can be interpreted as, with 2 tests in its left-hand side and a predicted error of 68.6% was used 3 times in classifying the training cases.
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Following the report on each rule there is a summary and a confusion matrix showing where the misclassifications of the training cases occur. The production rule classification model is now evaluated on the unseen test cases.

On the whole, the production rule classification model has 43 (5.1%) errors on the test cases.
4 attributes (use 3 attributes to detect if 4th attribute is +a or –a)

[image: image7.png]GEdownamEsegeranopog

cssmunamEsemeranopog

(2.
(1.
(3.
(2.
(0.
(2.
I
2
I
s
1
©

0
0
0
0
0
0
0
0
0
0
0
0

(10.0)

(1.
(0.
(1.
(2.
(1.
(2.
(0.

(4.
(1.
(s.

0
0
0
0
0
0
0

0
0
0

(17.0)

(3.
(2.
(0.
(2.
(5.
(5.
(1.
(4.
(s.
(4.
(1.
(s.
.0/1.0)
(3.
(2.
.

I8

0
0
0
0
0
0
0
0
0
0
0
0

0
0
o)




[image: image8.png]a: -a (7.0)
e: -a (0.0)
d: -a (10.0)
e: -a (3.0/1.0)
£: -a (6.0/1.0)
gt -a (1.0)
Bt -a (2.0)
it -a (6.0)
ki -a (9.0)
1t -a (27.0/1.0)
m: +a (3.0/1.0)
n: -a (0.0)
p:o-a (10.0)
a: -a (0.0)
rio-a (2.0)
s:-a (5.0)
t:o-a (5.0)
vi-a (10.0)
wio-a (7.0)
yi -a (7.0
a: -a (4.0)
e:-a (1.0)
a: -a (1.0)
e: -a (5.0)
£ -a (4.0)
gi -a (6.0)
Bt -a (1.0)
it -a (z.0)
ki -a (5.0)
1t -a (3.0)
m: +a (1.0)
n: -a (1.0)
pio-a (3.0)
a:-a (1.0)
rio-a (4.0)
s: -a (0.0)
t:-a (0.0)
vi -a (2.0)
wio-a (2.0)
yi +a (2.0/1.0)





[image: image9.png]GEdownamEsegeranopog

FgsdowngEEIgeFanoang

(1.
(0.
(1.
(0.
(0.
(3.
©
4
©
1
©
©
©
(1.
(1.
(1.
(1.
(1.
(1.
(0.

il
il
il
il
il
il
o
0/2.0)
il
il
il
il
il
il
il
il
il
il
il
o

(10.0)

.01
.0/1.0)
.0/1.0)




[image: image10.png](3.
(2.
(s.

(0.0
(z.0)
(1.0
(z.0)
(1.0
(1.0
(0.0)
(0.0)
(0.0)
(1.0
(0.0)
(0.0)
(1.0
(0.0
(2.0/1.0)
(0.0)
(1.0
(1.0
(0.0)
(0.0)

il
il
0

(17.0/2.0)

(2.
(a.
(1.
(1.
(s.
(1.
(1.
(3.
(1.
(3.
(a.
(s.
(3.
(a.
(1.
(1.

1.

il
il
il
il
il
il
il
il
o
0/1.0)
0/1.0)
0/1.0)
il
il
il
o

o)




[image: image11.png](1.0

-a (0.0
-a (1.0
-a (0.0
-a (2.0]
+a (1.0
-a (1.0
-a (2.0
-a (0.0
-a (1.0
-a (0.0
-a (2.0]
-a (0.0
-a (2.0]
-a (3.0
-a (0.0
-a (0.0
-a (0.0
-a (0.0
-a (1.0

Simplified Decision Tree:
-a {1500.0/93.0)

Tree saved




This tree can be paraphrased as above shown.

The numbers in parentheses following each leaf indicate the number of training cases associated with each leaf and the number of them misclassified by the leaf.
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The output shows both the original and simplified trees perform on the training set from which they were constructed. The original tree of 341 nodes misclassifies 63 of the 1500 training cases (error rat 4.2%). The simplified tree misclassifies 86 of the 1500 training cases (error rate 6.2%), but the program predicts that it will have a higher error rate of 6.2% on unseen cases.

All the above has been carried out without examining the test cases. After reading the file of 386 cases, each case classified by original and simplified trees. The original tree misclassified 33 of the 386 unseen cases (error rate 8.5%), the simplified tree misclassified 26 of the 386 unseen cases (error rate 6.7%).
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Suggestions / Next Step
· What if we use amino acid groups? Will there be better results.

· What if we use other proteins? (more test data)
· What if we use proteins with a lot of +a? (less –a, like equal number)

· Need to look at algorithm of C4.5 and RICO. Update them?

· RICO is good for rule generation. (but too strict, killing rules, does not allow error)

· C4.5 allows error, but only have + - class. (if allows multiple classes will be good)

· Other software? Or restructure the output.

· Filter rules with 0% error? (most are –a class rules)
· Compare rules from different test sets of different amino acid classes. Merge them? (write a program to merge them.
· Helices observed in proteins can range from four to over forty residues long, but a typical helix contains about ten amino acids (about three turns). Try to run test on 10 amino acid long sequences, predict middle amino acid?
Questions: 

· How proteins are folded? Is a secondary structure independent of other secondary structures?
· If all amino acids in a protein affect each other, we may need to “train” with sequences of the whole protein.
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