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Abstract
Comparative-based gene recognition: conserved regions between related organisms are more likely than divergent regions to be coding.
Probabilistic framework – find gene structure and alignment of 2 syntenic genomic regions
Enhance gene prediction by finding the best alignment

Find biologically meaningful alignments that preserve the correspondence between coding exons.

===========================
ROSETTA program – annotating human genes using syntenic unannotated mouse genomic DNA. (Different from homology-based gene finders, using protein homologs or confirming EST evidence)
Compute 2 identical types o sequences (genomic DNA), use extra information such as gene structure and splice site conservation, introducing complications (different from homology-based programs).

Alignment – attempt to incorporate the annotation of the sequences (consideration of biological features).  E.g. WABA takes advantage of the 3rd base wobble. 

Program – place annotation and alignment problems on an equal footing. 

Generalized hidden Markov model (GHMMs) – GENSCAN program 1997

Generalized pair hidden Markov model (GPHMM) – PHMM shown to be equivalent to Needleman-Wunsch. The GPHMM generalizes PHMM.

SLAM – annotate syntenic sequences by finding coding exons and conserved noncoding sequences, or as a global alignment program (takes advantage of biological features).

Result

SLAM was tested on ROSETTA test set, compared to programs: GENSCAN, ROSETTA, SGP-1, SGP-2, TWINSCAN.

Discussion

SLAM implements GPHMM, simultaneously aligns and predicts genes in 2 orthologous sequences.

Components of SLAM, CNS (conserved noncoding sequence) state and paired exon scoring in protein space to distinguish coding from noncoding conservation – used for gene prediction as well as for alignment.

Methods

Pairs of sequences and their associated gene structures and alignment were modeled using GPHMM.

Input to SLAM = 2 sequences and an approximate alignment.

Main components of SLAM GPHMM = splice-site detector, an intron/intergene (I-state) model, an exon pair scoring model, and a conserved noncoding sequence (CNS model). 

SLAM GPHMM generates 2 sets of durations (lengths) for the exons, one for each sequence. 
Combination of 2 types of HMM – pair HMMs and generalized HMMs. 

PHMM generates output in pairs.

GHMM generate output of different lengths. 

(Fig 2) Exon Model, Intron and Intergenic Models

Terms
Synteny describes the preserved order of genes between related species.
Markov Model: (http://www.markov-model.com/)
For example, in Reliability Engineering, the operation of the system may be represented by a state diagram, which represents the states and rates of a dynamic system. This diagram consists of nodes (representing a possible state of the system, which is determined by the states of the individual components & sub-components) connected by arrows (representing the rate at which the system operation transitions from one state to the other state). Transitions may be determined by a variety of possible events, for example the failure or repair of an individual component. A state-to-state transition is characterized by a probability distribution. Under reasonable assumptions, the system operation may be analyzed using a Markov model.
The Markov property states: given the current state of the system, the future evolution of the system is independent of its history. The Markov property is assured if the transition probabilities are given by exponential distributions with constant failure or repair rates. In this case, we have a stationary, or time homogeneous, Markov process. (Markov property = future states of the process, given the present state and all past states, depends only upon the present state and not on any past states.)
Pair hidden Markov Model:

…

Generalized hidden Markov Model (wikipedia.org):
A hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to be a Markov process with unknown parameters, and the challenge is to determine the hidden parameters from the observable parameters.
In a regular Markov model, the state is directly visible to the observer, and therefore the state transition probabilities are the only parameters. In a hidden Markov model, the state is not directly visible, but variables influenced by the state are visible. Each state has a probability distribution over the possible output tokens. Therefore the sequence of tokens generated by an HMM gives some information about the sequence of states.

The diagram below shows the general architecture of an HMM.
oval shape = random variable = x(t) = value of the hidden variable at time t. 
random variable y(t) = the value of the observed variable at time t. 
arrows = conditional dependencies.
x(t) (at time t) only depends on x(t − 1) (at time t − 1). This is called the Markov property.
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The probability of observing a sequence Y = y(0),y(1),...,y(L − 1) of length L is given by:
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where the sum runs over all possible hidden node sequences X = x(0),x(1),...,x(L − 1). A brute force calculation of P(Y) is intractable for realistic problems, as the number of possible hidden node sequences typically is extremely high. The calculation can however be sped up enormously using an algorithm called the forward-backward procedure 

Using the model:

· Given the parameters of the model, compute the probability of a particular output sequence. This problem is solved by the forward-backward algorithm. 

· Given the parameters of the model, find the most likely sequence of hidden states that could have generated a given output sequence. This problem is solved by the Viterbi algorithm. 

· Given an output sequence or a set of such sequences, find the most likely set of state transition and output probabilities. In other words, train the parameters of the HMM given a dataset of sequences. This problem is solved by the Baum-Welch algorithm.
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